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Current brain network studies based on persistent homology mainly focus on the
spatial evolution over multiple spatial scales, and there is little research on the evolution
of a spatiotemporal brain network of Alzheimer’s disease (AD). This paper proposed
a persistent homology-based method by combining multiple temporal windows and
spatial scales to study the spatiotemporal evolution of brain functional networks.
Specifically, a time-sliding window method was performed to establish a spatiotemporal
network, and the persistent homology-based features of such a network were obtained.
We evaluated our proposed method using the resting-state functional MRI (rs-fMRI)
data set from Alzheimer’s Disease Neuroimaging Initiative (ADNI) with 31 patients
with AD and 37 normal controls (NCs). In the statistical analysis experiment, most
network properties showed a better statistical power in spatiotemporal networks than
in spatial networks. Moreover, compared to the standard graph theory properties
in spatiotemporal networks, the persistent homology-based features detected more
significant differences between the groups. In the clustering experiment, the brain
networks on the sliding windows of all subjects were clustered into two highly structured
connection states. Compared to the NC group, the AD group showed a longer
residence time and a higher window ratio in a weak connection state, which may
be because patients with AD have not established a firm connection. In summary,
we constructed a spatiotemporal brain network containing more detailed information,
and the dynamic spatiotemporal brain network analysis method based on persistent
homology provides stronger adaptability and robustness in revealing the abnormalities
of the functional organization of patients with AD.

Keywords: Alzheimer’s disease, brain network, functional magnetic resonance imaging, dynamic functional
connectivity, persistent homology, sliding window

INTRODUCTION

Alzheimer’s disease (AD) (Scheltens et al., 2021) is one of the classic chronic neurodegenerative
diseases, which is considered as a common form of dementia. With the progress of this disease, it
gradually spread to different brain regions, thus greatly affecting the patient’s daily life (Patterson,
2018). Currently, the resting-state functional MRI (rs-fMRI) (Engels et al., 2017) has become
an important technology to explore brain functional networks. A lot of early brain functional
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alterations related to AD pathophysiology have been reported
using various brain network analysis methods (Hallquist and
Hillary, 2018; Marquez and Yassa, 2019; Mill et al., 2020). Most
of these methods assume that the functional connectivity is
constant during the brain imaging process, which may ignore
some key time-varying information of the brain network caused
by healthy brain or nervous system diseases. Therefore, it is
necessary to study dynamic functional connectivity based on
temporal dynamics (Preti et al., 2017).

Currently, the main methods used in the dynamic functional
connectivity analysis include sliding window analysis, clustering
analysis, time-frequency coherence analysis, and dynamic graph
theory analysis (Preti et al., 2017). Among them, a large number
of studies (Chen et al., 2016, 2021; de Vos et al., 2018; Lei
et al., 2021) have adopted the time-sliding window approach
to analyze the time-varying domain of functional connectivity.
In this way, an entire rs-fMRI time series is divided into
multiple subseries. For each segment, a functional connectivity
network is constructed to measure the short-term correlation
between the brain regions. Thus, all networks constructed from
all segments describe the dynamics of the short-term functional
connectivity over time. Further, the volatility between specific
time points or time windows is observed by some network
metrics. Specifically, a dynamic graph theory-based analysis
method has developed a series of network metrics (Hallquist
and Hillary, 2018; Sporns, 2018) to detect the differences of
brain network structures over time in rs-fMRI research. Using
the method of sliding window, more differences between the
groups in a dynamic brain network can be observed, which
cannot be seen in a static brain network. Multiple time windows
provide more temporal evolution information for the brain
network analysis. However, the spatial evolution information
is missing as the brain network is measured on a single
fixed spatial scale.

Recently, persistent homology (Edelsbrunner and Harer,
2010) is an important research tool of topological data analysis,
which focuses on exploring topological invariants with the
increase of spatial scales. In the process of spatial scale change,
the topological feature with a shorter duration is considered
as noise, and the feature with a longer duration is used to
represent an essential feature (Giusti et al., 2016). Compared
with the traditional graph theory method, it can better reveal
topological changes in space and avoid the problem of scale
threshold selection. Some studies have successfully applied the
persistent homology technology to analyze the brain network
structure of AD (Kuang et al., 2019a, 2020b), epilepsy (Choi et al.,
2014), autism spectrum disorder, attention-deficit hyperactivity
disorder (Lee et al., 2012, 2017), etc. In our prior study on
AD brain networks (Kuang et al., 2019a), we have proposed an
integrated persistent feature (IPF) based on persistent homology
that achieves holistic descriptions of spatial dynamics of the brain
network. We have also found that the IPF is more robustness than
graph theory-based metrics in our prior studies (Kuang et al.,
2019a,b, 2020a,b). However, all existing studies on persistent
homology only focus on the feature invariants in the process
of spatial dynamics, but no literature studies have reported the
influence of the change of time window on feature invariants.

In summary, there are a few available frameworks that can
simultaneously quantify the brain network structure both in the
time domain and in the spatial domain. As the time-sliding
window approach can produce multiple dynamic time windows
for studying the characteristics of time-varying connectivity,
and the persistent homology method has been verified to
be good at measuring the characteristics of space-varying
connectivity, we propose a novel method combining spatial
scale filtrations of persistent homology with temporal sliding
windows. We hypothesize that such generated spatiotemporal
network dynamics may improve the performance of detecting
AD-induced topological changes in the rs-fMRI analysis, and the
derived network properties based on persistent homology may be
used as the potential biomarkers for AD imaging.

In this paper, we develop a persistent homology-based method
by combining multiple temporal windows and spatial scales to
study the spatiotemporal evolution of brain functional networks.
Specifically, a time-sliding window method is performed to
establish a spatiotemporal network and the persistent homology-
based features of such a network are obtained. In our
experiments, we evaluate our proposed method using rs-fMRI
data set with 31 patients with AD and 37 normal controls
(NCs). We test whether the proposed method provides stronger
adaptability and robustness in revealing the abnormalities of the
functional organization of patients with AD.

MATERIALS AND METHODS

For each participant, the processing and analysis pipeline is
summarized in Figure 1. Initially, the rs-fMRI data were acquired
and preprocessed using well-known toolboxes (Step 1). Then,
each subject’s blood oxygen-level dependent (BOLD) signals
within each region of interest (ROI) were obtained and divided
into some segments by moving a sliding window over it (Step 2).
For each subject, we then constructed a spatial network (Step 3)
from the entire BOLD signals, as well as a series of spatiotemporal
networks (Step 4) from the divided signal segments. Further,
we applied a clustering analysis to spatiotemporal networks to
verify whether the network structures of AD and NC are different
(Step 5). Finally, we measured the network topology properties
(Step 7) of each subject using the two kinds of methods, i.e.,
traditional graph theory and novel persistent homology based on
graph filtration (Giusti et al., 2016) (Step 6). The specific steps are
described in the following subsections.

Data Acquisition and Preprocessing
The data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database1 (Jack et al., 2008; Jagust et al., 2010), which are used
to measure the progression of mild cognitive impairment (MCI)
and early AD. The rs-fMRI data set was acquired from ADNI-2
in this study. Specifically, the 3.0T Philips MRI scanner was used
to scan the brain of the subjects, and a high-resolution rs-fMRI
three-dimensional image was acquired by an echo plane imaging

1adni.loni.usc.edu
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FIGURE 1 | The pipeline of measuring brain network topological structure based on graph theory and persistent homology using resting state functional MRI
(rs-fMRI) data from Alzheimer’s Disease Neuroimaging Initiative (ADNI).

(EPI) sequence. The acquisition parameters are as follows: echo
time (TE) = 30 ms, turning angle = 80◦, slice thickness = 3.3 mm,
slice number = 48, matrix size = 64 × 64, repetition time
(TR) = 3,000 ms, and time point volume = 140.

In this study, we used the commonly available rs-fMRI data
of the ADNI database and screened the subjects’ age, education
level, and gender. Thus, there were a total of 68 AD and NC
studies. Then, spm122 and DPARSF toolboxes3 (Yan and Zang,
2010) were applied for rs-fMRI data preprocessing. The specific
steps are as follows.

Firstly, for each subject, the first 10 time points of rs-fMRI
images were discarded to improve the signal-to-noise ratio and

2http://www.fil.ion.ucl.ac.uk/spm/
3http://restfmri.net/forum/DPARSF

achieve signal stability. The remaining 130 time points were used
for further analysis.

Secondly, the time correction was applied according to the
acquisition time difference between the scanning layers. The slice
at TR/2 time point was used as the reference scanning layer,
and other scanning layers were aligned to it to ensure that the
acquisition of each slice corresponds to the same time point.

Further, a spatial correction was applied. Each subject’s
functional images were aligned to the Montreal Institute
of Neurology (MNI) space according to its structural
image (T1 image).

Then, spatial smoothing with a Gaussian kernel of
4 × 4 × 4 mm full width at half maximum, linear trend
removal, band-pass filtering (0.01–0.08 Hz), and global signal
regression were carried out in turn.
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Finally, a covariate regression analysis was used to eliminate
the signal fluctuation caused by a cerebrospinal fluid signal, white
matter signal, and head movement.

As there is still a controversy on whether to eliminate
the whole brain signal, this study did not regress the whole
brain signal. At the end of the experiment, the data of head
displacement more than 1 mm or of head-motion rotation more
than 1◦ were excluded.

Construction of Brain Networks
We constructed the two modes of brain network, i.e., spatial
network and spatiotemporal network. A spatial network was
established according to the brain partition template on
spatially anatomical labeling, while a spatiotemporal network was
constructed by sliding a time series window.

Construction of Spatial Network
According to standard automated anatomical labeling (AAL)
atlas (Tzourio-Mazoyer et al., 2002), the whole brain is spatially
divided into 90 ROIs. In this paper, we also studied another
subnetwork of AAL with 26 ROIs, i.e., default mode network
(DMN). After image preprocessing, the average rs-fMRI time
series (a total of 130 time series, K = 130) of each brain
region were summarized, and the Pearson correlation coefficient
between each pair of ROIs was defined as its functional
connectivity. Therefore, the spatial brain network of each subject
was constructed and represented as an adjacency matrix with a
size of 90 × 90 or 26 × 26 (N = 90 or 26). Specifically, each ROI
represents a node, and the edge weight between ROI i and j is
defined based on Pearson correlation, i.e.,

wij = 1−
cov

(
xi, xj

)
σxiσxj

=

1 −
∑N

k=1 (xik − x̄i)
(
xjk − x̄j

)√∑N
k=1 (xik − x̄i)2

√∑N
k=1

(
xjk − x̄j

)2
, (1)

where xi = (xi1, xi2, · · · , xiN) and xj = (xj1, xj2, · · · , xjN) are the
time series of BOLD signals at the ith and jth ROI, respectively.

Construction of Spatiotemporal Network Based on
Sliding Time Window
In this study, a sliding window method (Chen et al., 2016, 2021;
de Vos et al., 2018; Lei et al., 2021) was performed to establish
a spatiotemporal network as shown in Figure 2. A detailed
construction process is described as follows.

First, a conical window was created by convoluting a sliding
time series window with a Gaussian kernel (σ = 3TR). Compared
with the traditional rectangle, the conical window has the
advantage of reducing the weight of boundary time points when
the subsequence window is sliding. The sliding window width W
was set to 20TR (60 s) because previous studies have shown that
a window width of 30–60 s is able to successfully capture resting-
state functional connectivity fluctuations (Preti et al., 2017).

Then, for each subject, we moved the sliding window gradually
in the step of one TR each time and thus produced (K −W + 1)

subsequences of time windows. Here, K = 130 is the length of
the time series.

Further, for each time window i, an observation distance
matrix Ci (i = 1, 2, K −W + 1) was generated based on Pearson
correlation according to Equation (1), and the size of matrix is
N × N (N is the number of ROI, N = 90 or 26).

Thus, each subject had a series of time-varying matrices, which
could capture the dynamic changes of functional connectivity
during the resting-state scanning. A time-varying matrix is used
as a spatiotemporal network (see step 4 in Figure 1).

Finally, to quantify fluctuations in the connectivity time
courses, some summary measures have been used, such as their
SD (Preti et al., 2017; de Vos et al., 2018) or covariance (Chen
et al., 2016). In this study, for each subject, we calculated a SD
matrix across all time-varying matrices to quantitatively estimate
the stability of functional connectivity over time.

Spatiotemporal Network Clustering
Analysis
In this study, we propose a novel method based on persistent
homology to detect the differences of dynamic functional
networks between AD and NC groups. However, the mostly
applied strategy in this area is the state extraction of dynamic
functional connectivity through k-means clustering (Preti et al.,
2017). To verify the effectiveness of our proposed method,
we also use the traditional method to conduct experiments
on spatiotemporal networks. Specifically, we used k-means
clustering (de Vos et al., 2018) to capture the state changes
of functional connectivity in a dynamic time series, and then
analyzed the differences between the groups of all patients with
AD and NC subjects in the identical states of dynamic functional
connectivity. The k-means clustering method uses a distance
function to cluster data into different clusters in an iterative
manner. It clustered the time-varying matrices of all sliding
windows of all individuals into k clustering states. The similarity
within the cluster is very high, while the similarity between the
clusters is extremely low. In this study, the k-means algorithm
was applied to a series of time-varying matrices according to its
Manhattan distance (Allen et al., 2014).

We further observed each clustering state from two aspects,
window ratio and average residence time using the DynamicBC
toolbox (Liao et al., 2014). Specifically, the window ratio is
calculated as the proportion of staying in a given state window,
and the average residence time represents the number of
consecutive windows belonging to a state.

Network Properties
In this study, network measurement methods based on graph
theory and persistent homology were used to measure brain
functional organization.

Graph Theory-Based Network
Graph theory analysis methods (Sporns, 2018) have been widely
used in the study of brain network topology structure. This
paper mainly used the currently widely used graph theory
indicators. We measured the global and local transmission
capabilities of the network (global efficiency and local efficiency)
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FIGURE 2 | Construction of a spatiotemporal brain network by the sliding window method.

(De Pasquale et al., 2016), the shortest path between the brain
regions (characteristic path length) (Brier et al., 2014), the
importance of nodes (eigenvector centrality) (Binnewijzend et al.,
2014), the degree of clustering of nodes (clustering coefficient)
(Rauchmann et al., 2021), the characteristics of the small-
world network (Watts and Strogatz, 1998), and the minimum
eccentricity of nodes (network radius) (Fujita et al., 2017). As
these graph theory indicators usually measure the brain network
on a fixed scale, the brain network needs to be filtered before
measuring its structure. The statistical analysis of connectivity
has been commonly used to filter the network. Specifically, we
deleted the edges that were not significantly connected in the
brain network (p > 0.05) to obtain a sparse structure (Smith
and Nichols, 2009; Wang et al., 2013). Then, we applied a brain
connectivity toolbox4 (Rubinov and Sporns, 2010) on the filtered
brain network to calculate these graph theory-based indicators.

Persistent Homology-Based Network Properties
Persistent homology (Edelsbrunner and Harer, 2010) is a
mathematical concept from the algebraic topology. The typical
approach of persistent homology is Betty number plot (BNP)
(Lee et al., 2012; Giusti et al., 2016), which can distinguish
persistent features from noise in graph filtering and is considered
as a useful feature descriptor. It has been successfully used in
brain network research based on fluorodeoxyglucose-positron
emission tomography (FDG-PET) and MRI data in some

4https://sites.google.com/site/bctnet/

neurodegenerative diseases (Lee et al., 2012, 2017; Choi et al.,
2014). In our previous research, we proposed an IPF (Kuang et al.,
2019a), which integrates a connected component aggregation
cost with BNP to realize the spatial evolution of the overall graph.
The IPF is defined as follows:

IPFλi =


m−i

m(m−1)

m−1∑
k=i+1

λk, 0 ≤ i ≤ m− 2

0 . i = m− 1
, (2)

where m is the maximum number of connected components, λ

is a series of filtration values (λ0 = 0 < λ1 < λ2 < ... < λm−1)
generated by all edge weights of the maximum connected
components of the brain network (see step 6 in Figure 1).

Further, the medical field tends to use a single indicator to
measure biomarkers. Because IPF is a monotonically decreasing
convergence function, the slope of IPF (SIP) is used as an index
to quantify the dynamic research of AD brain network. We have
successfully applied the SIP to AD brain network analysis in our
prior studies (Kuang et al., 2019a,b, 2020a,b). Our opensource
code of persistent homology can be downloaded at http://gsl.lab.
asu.edu/software/IPF.

Statistical Test
A two-sample t-test was performed on the brain network
properties based on graph theory and persistent homology, as
well as clustering states. p < 0.05 indicates that the difference
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between the two groups is statistically significant. We used Matlab
(R2017a) for statistical test.

RESULTS

Demographic Information
The experimental participants were obtained from ADNI-2.5

Details of demographic characteristics are shown in Table 1.
There were 31 AD subjects aged 60–90 years old in rs-
fMRI data set. To conduct a comparative study with the
patient group, 37 matched NC subjects were selected in this
study. Diagnostic classification was made by ADNI investigators
using the established criteria. The Clinical Dementia Rating
(CDR) global score of any AD patient was no less than 1,
while that of NC subject was 0. There are no significant
differences in age, education, and gender between the groups.
However, there is a significant difference in Mini-Mental Status
Examination (MMSE) scores (Folstein et al., 1975). In addition,
the displacement of head movement in any subject’s image is
less than 1 mm, and the rotation angle in any direction is less
than 1◦.

Whole Brain Network Properties
In this study, the properties based on graph theory and persistent
homology methods were used for the whole brain network
analysis using AAL atlas. Their statistical differences between
groups are shown in Table 2 using a two-sample t-test.

In the network measurement using graph theory-based
properties, the network radius showed significant differences
between patients with AD and subjects with NC (AD: 6.17± 2.63;
NC: 5.97± 2.64, p = 0.0493) in a spatial network. However, other
network properties based on the graph theory could not detect
any significant differences between the groups either in a spatial
or spatiotemporal network.

Then, in the network measurement using persistent
homology-based properties, the SIP index showed very
significant differences between the groups in a spatial network
(AD:− 0.67± 0.13; NC:− 0.75± 0.10, p = 0.008 < 0.01), so does
the BNP index (AD: − 257.16 ± 43.18; NC: − 283.12 ± 56.82,
p = 0.041 < 0.05). Moreover, in the spatiotemporal network
measurement, the group difference of BNP is more significant

5http://adni.loni.usc.edu

TABLE 1 | Demographic information of experimental subjects.

AD (n = 31) NC (N = 37) p-value

Age 74.0 ± 6.1 74.1 ± 6.2 0.7486

Education 15.4 ± 3.9 16.1 ± 3.6 0.4267

Gender (male/female) 16/15 15/22 0.6033

MMSE 22.8 ± 3.4 28.8 ± 1.6 0.0015

CDR score ≥ 1 0 –

Data are presented as mean ± SD.
AD, Alzheimer’s disease; NC, normal control; MMSE, Mini-Mental State
Examination; CDR, clinical dementia rating.

(AD: − 718.53 ± 84.92; NC: − 793.13 ± 109.96, p = 0.0030,
much less than 0.041) than in a spatial network, and so is SIP
(AD:− 0.52± 0.11; NC:− 0.59± 0.09, p = 0.002 < 0.008).

To sum up, the differences of persistent homology indicators
between AD and NC are significantly greater than those of
graph theory indicators. Moreover, their group differences in
a spatiotemporal network are more significant than those in a
spatial network. It suggests that a brain spatiotemporal network
analysis based on persistent homology is more likely to explore
potential biomarkers.

Brain Default Mode Network Properties
Default mode network is a functional subnetwork with the
strongest variability in the study of AD, which contains the most
obvious areas of brain atrophy. In this study, 26 areas (Vriend
et al., 2018) in AAL were identified as the ROIs of DMN. The
statistical differences of network properties between the groups
in the DMN atlas are shown in Table 3.

In the study of DMN based on the graph theory method,
there is no significant difference in the small-world attribute
in the spatial DMN (p > 0.05), but it shows a very significant
difference in the spatiotemporal network (AD: 1.03 ± 0.02; NC:
1.02 ± 0.01, p = 0.007), suggesting a small-world attribute could
detect subtle time variability in the spatiotemporal DMN. In
addition, it can be seen that the eigenvector centrality has very
significant differences between the groups in both the spatial
network (AD: 0.1046 ± 0.01; NC: 0.1047 ± 0.01, p = 0.009) and
spatiotemporal network (AD: 0.1946 ± 0.01; NC: 0.1950 ± 0.01,
p = 0.017), while there is no difference in the whole brain study.

Then, in the study of DMN based on persistent homology,
both SIP and BNP detected significant differences between
the groups in spatial and spatiotemporal networks. Especially
in the spatiotemporal DMN, the SIP (AD: − 0.69 ± 0.12;
NC: − 1.46 ± 0.10, p = 0.003) and BNP (AD: − 171.41 ± 32.24;
NC: − 198.84 ± 34.08, p = 0.001) have very significant
group differences.

In general, the spatiotemporal DMN properties based on
persistent homology performed the best. Research on the
persistent homology of spatiotemporal DMN is more likely to
distinguish AD from NC, and it is more likely to explore the
potential biomarkers for AD imaging.

Spatiotemporal Network Clustering
Results
To determine the optimal number of clusters k, we took k
from 2 to 9 and repeated the test 100 times for each value.
The experimental result is shown in Figure 3, where the solid
point represents the best number of clusters. Here, the most
suitable number of clusters was k = 2. The Silhouette score and
Calinski–Harabasz index were used to evaluate the effectiveness
of the clustering results. We further check the optimal number of
clusters using a fivefold cross-validation. The average distance of
test sets was calculated while selecting different cluster numbers,
as shown in Figure 4. The error distance reached the minimum
when the cluster number was 2, suggesting that the optimal value
of k was 2 again. Thus, the AD and NC subjects’ varying-time
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TABLE 2 | Statistical p-values of different network properties between Alzheimer’s disease (AD) and normal control (NC) groups in automated anatomical labeling (AAL).

Network mode Graph theory-based properties Persistent homology-based properties

GE LE CPL EC CC SW NR SIP BNP

Spatial network 0.075 0.828 0.484 0.092 0.357 0.763 0.049* 0.008** 0.041*

Spatiotemporal network 0.230 0.642 0.518 0.086 0.327 0.119 0.311 0.002** 0.003**

*p < 0.05; **p < 0.01.
GE, global efficiency; LE, local efficiency; CPL, characteristic path length; EC, eigenvector centrality; CC, clustering coefficient; SW, small-world attribute; NR, network
radius; SIP, slope of integrated persistent feature plot; BNP, Betty number plot.

TABLE 3 | Statistical p-values of different network properties between AD and NC groups in a default mode network (DMN).

Network mode Graph theory-based properties Persistent homology-based properties

GE LE CPL EC CC SW NR SIP BNP

Spatial network 0.058 0.960 0.619 0.009** 0.230 0.074 0.164 0.004** 0.049*

Spatiotemporal network 0.177 0.447 0.353 0.017* 0.145 0.007** 0.547 0.003** 0.001**

*p < 0.05; **p < 0.01.
GE, global efficiency; LE, local efficiency; CPL, characteristic path length; EC, eigenvector centrality; CC, clustering coefficient; SW, small-world attribute; NR, network
radius; SIP, slope of integrated persistent feature plot; BNP, Betty number plot.

FIGURE 3 | Optimization for the number of clusters.

matrices of sliding windows were clustered into two highly
structured functional connectivity states separately.

We calculated a specific functional connectivity matrix (i.e.,
cluster center) for all windows in each state, and each element in
the matrix was the median value of the corresponding element
belonging to a state in all window matrices. The cluster center
diagrams of the whole brain network and DMN are shown
in Figures 5, 6, respectively, where maps correspond to the
number of windows in a state, and the color bar represents the
Pearson correlation coefficient value. It can be seen that state A

is a stronger connection state, and state B is a sparser one. In
the whole brain network clustering (see Figure 5), the window
ratio of patients with AD in state A is reduced by about 5%
compared with NC subjects, while it increases accordingly in state
B. Similarly, in the DMN clustering (see Figure 6), compared with
NC subjects, the window ratio of patients with AD in state B (AD:
0.67± 0.05; NC: 0.47± 0.06, p < 0.05) is significantly higher.

Further, the results of average residence time are shown
in Figures 7, 8. It is calculated by averaging the number of
consecutive windows before changing from one to another state.
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FIGURE 4 | Cross-validation to determine the number of clusters.

The number of consecutive windows of AD in state B is relatively
large, either in the whole brain network (see Figure 7, AD: 40± 8
windows; NC: 27 ± 5 windows, p < 0.05), or in DMN (see
Figure 8, AD: 47± 8; NC: 28± 6, p < 0.05).

In summarily, the clustering results of the DMN subnetwork
were similar to those of the whole brain network, and the
difference between the AD and NC group was more significant.
The brain network of patients with AD is more likely to stay in
state B, a weak connection state.

DISCUSSION

Present Findings
This paper studies the differences of spatiotemporal network
dynamics between patients with AD and NCs in the whole
brain network and its subnetwork DMN. There are three main
findings in this study.

First, the spatiotemporal dynamics method combining a
sliding window and persistent homology performs better than
existing methods in the AD brain network analysis, and the
persistent homology-based measures can be used as a potential
biomarker. In our experiment, most of the network properties
were more powerful in the spatiotemporal brain network than in

FIGURE 5 | The cluster center diagram of spatiotemporal automated anatomical labeling (AAL) networks for Alzheimer’s disease (AD) and normal control (NC).
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FIGURE 6 | The cluster center diagram of spatiotemporal default mode networks (DMNs) for AD and NC.

the spatial brain network, particularly two persistent homology-
based properties. Both SIP and BNP detected significant group
differences (p < 0.01) in a spatiotemporal network after
introducing time-varying information, in both the whole brain
network and DMN subnetwork. In addition, in the DMN, the
small-world attribute of a spatiotemporal network (p < 0.01) is
significantly different from that of a spatial network (p> 0.05). In
general, the brain spatiotemporal network could provide a more
subtle temporal variability than a spatial network.

Second, in the study on the AD brain network, the DMN
is a more suitable network than the whole brain network.
The difference between groups of most network properties in
DMN was more apparent than that in the whole brain network.
In the DMN measurement using the graph theory method,
the eigenvector centrality detected very significant differences
between the groups in both spatial and spatiotemporal networks,
while there was no difference in the whole brain study. Similarly,
there was no significant difference in the small-world attribute
in the whole brain network, but there was a very significant

difference in the spatiotemporal DMN. Overall, the DMN is more
likely to distinguish AD from NC, and it is more likely to explore
the potential biomarkers for AD imaging.

Finally, the clustering results show that AD tends to be in
the weak connection state. The window ratio and the average
residence time in the weak connection state were relatively higher
for patients with AD than those of NC. It may be due to the fact
that patients with AD have not established a firm connection.

Experimental Result Analysis of
Proposed Method
As the persistent homology-based features are monotonically
decreasing convergence functions according to filtration values,
both the network properties BNP and SIP can be considered
as the information diffusion rate or convergence rate in the
process of reaching a fully connected component. In this study,
in both the whole brain network and DMN, the values of the
BNP group and the SIP group showed the same pattern of
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FIGURE 7 | The average residence time of spatiotemporal AAL networks for
AD and NC.

FIGURE 8 | The average residence time of spatiotemporal DMNs for AD and
NC.

| AD| < | NC|, with a significance in the level p < 0.01 based on
a two-sample t-test. The fact that the BNP and SIP curves of the
AD group are not as steep as those of the NC group may mean
that the information diffusion speed in the AD group is slow.
Because the persistent homology-based features measure the
topology of the whole brain network, it is reasonable to speculate
that the slow convergence rate is caused by the reduction of
functional integration of the whole brain, which may further lead
to cognitive defects in patients with AD.

Further, we apply the traditional method of cluster analysis
to verify the abovementioned assumption. The spatiotemporal
networks of AD and NC individuals were clustered into two
states. One shows the pattern with a stronger connectivity
in the brain region, and another presents the pattern with
less connection definitions and a lower connectivity. Moreover,
the brain network of patients with AD were more likely to
stay in a weak connection state. This finding confirms the
abovementioned assumption about the weak integration ability
of AD brain network. Therefore, our proposed method based on
persistent homology provides a novel viewpoint of the overall

tissue injury and the interruption of neuronal integration in
patients with AD dementia.

Clinical Potential of Spatiotemporal
Brain Network
We proposed a novel method to construct and measure
a spatiotemporal network based on persistent homology
(i.e., spatiotemporal network + persistent homology-based
properties). We compared our experimental results with two
dynamic spatiotemporal methods and two static spatial methods
for a functional connectivity analysis, including spatiotemporal
network + graph theory-based properties, spatiotemporal
network + k-means clustering, spatial network + persistent
homology-based properties, and spatial network+ graph theory-
based properties. Because the strength of functional connectivity
varies in the range of seconds to minutes, it is important to
analyze the differences between different time periods, forming
temporal dynamics. Only a spatiotemporal brain network is able
to capture the inner dynamic nature of connectivity alterations,
therefore the dynamic spatiotemporal methods are demonstrated
to be more powerful to distinguish the AD group from the
NC group than the static spatial methods without time-varying
information, as shown in Tables 2, 3.

Further, in dynamic spatiotemporal network analyses, after
sliding time windows, the state extraction through k-means
clustering and the network topology measurement have been
the two most widely applied strategies (Preti et al., 2017). The
former technique enables to detect differences between AD and
NC groups based on the dynamical occurrence and connectivity
strength of connectivity states. Then, the latter technique allows
to refine the meaning of the observed spatial differences across
groups using some network metrics. With graph theory-based
network properties, various non-trivial topological features,
including small-world organization, modular structure, and
highly connected hubs, have been observed to be disrupted in
patients with AD (Sporns, 2018; Kuang et al., 2019a). Moreover,
the persistent homology-based network properties allow to
address dynamic abnormalities at a more global level, where the
evolution of the global pattern of connectivity contributed by all
scales is probed.

In summary, the dynamic spatiotemporal network analysis
provides more completed functional alterations in connectivity,
which cannot be depicted by a stationary analysis. Such kinds of
technique have a greater potential for clinical applications in AD.

Limitation and Future Works
Although the promising results were obtained by applying
the two suggested network properties SIP and BNP based on
persistent homology to discriminate spatiotemporal networks
between AD and NC groups, there are some important caveats.
First, most network properties showed a better statistical power
in spatiotemporal networks in ADNI data set. To validate the
robustness of the proposed method, we will further study on
other independent data sets. Then, current research is limited
to the analysis of the rs-fMRI data collected in a single time
period and does not verify multiple time periods. In the future,
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we will study the longitudinal trajectories (Dautricourt et al.,
2021) of functional brain dynamics over multiple time periods.
Last but not least, although this article interprets the temporal
dynamics of the functional brain network well and has obtained
good experimental results, a correlation analysis with behavioral
data should be performed in the future.

CONCLUSION

This work measured the functional brain network structure
of the whole brain network and its subnetwork DMN on rs-
fMRI data set. A novel method is proposed based on our prior
work of persistent homology. We combine multiple temporal
windows and spatial scales to study the spatiotemporal brain
dynamics. Most network properties show a better statistical
power in spatiotemporal networks than in spatial networks, and
the persistent homology-based features detected more significant
differences between AD and NC groups than the standard graph
theory properties. Moreover, the brain network of patients with
AD is more likely to stay in a weak connection state in a
clustering study. To the best of our knowledge, this is the first
study applying persistent homology to analyze the spatiotemporal
brain network. This study offers a novel insight into revealing the
abnormalities of the functional organization of patients with AD.
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